What is the inverse of #y=6^x#?

3 Answers

#x=log_6y#

Explanation:

Since

#x=log_ba iff a=b^x#

you have:

#y=6^x iff x=log_6y#

Jun 27, 2016

#y= (ln x)/(ln 6)#

Explanation:

Replace x with y and y with x,

# x= 6^y# and solve for y now

ln x= yln 6

#y= (ln x)/(ln 6)#

Jul 18, 2017

See below.

Explanation:

If #g(x)# is the inverse for #f(x)# then

#g(f(x))=x# then

#g(6^x)=x rArrg(x) = log_ex/log_e 6 = f^-1(x)#.