Find the derivative of #cos# using First Principles?
1 Answer
By the limit definition of the derivative if
# dy/dx=f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
So with
# f'(x) = lim_(h rarr 0) ( cos(x+h) - cos x ) / h #
Using the cosine sum of angle formula:
# cos(A+B)=cosAcosB- sinAcosB #
We get
# f'(x) = lim_(h rarr 0) ( cosxcos h-sinxsin h - cos x ) / h #
# " " = lim_(h rarr 0) ( cosxcos h-cosx-sinxsin h ) / h #
# " " = lim_(h rarr 0) ( cosx(cos h-1)-sinxsin h ) / h #
# " " = lim_(h rarr 0) {(cosx(cos h-1))/h-(sinxsin h ) / h} #
# " " = lim_(h rarr 0) (cosx(cos h-1))/h- lim_(h rarr 0)(sinxsin h ) / h #
# " " = cosxlim_(h rarr 0) (cos h-1)/h - sinx lim_(h rarr 0)(sin h ) / h #
We now have to rely on some standard calculus limits:
# lim_(h rarr 0)sin h/h =1 #
# lim_(h rarr 0)(cos h-1)/h =0 #
And so using these we have:
# f'(x) = cosx(0) - sinx (1) #
# " " = - sinx #
Hence,
# dy/dx=-sinx#