How do you solve #\frac { 1- x } { 3} = \frac { x } { 2} - \frac { x + 1} { 6}#?

1 Answer
Jul 20, 2017

#x=3/4#

Explanation:

#(1-x)/3=x/2-(x+1)/6#

We first multiply all terms by the LCM of the denominators to remove the fractions. The LCM is #6#.

#[6xx(1-x)/3]=[6xxx/2]-[6xx(x+1)/6]#

#[2cancel6xx(1-x)/(1cancel3)]=[3cancel6xxx/(1cancel2)]-[1cancel6xx(x+1)/(1cancel6)]#

#2(1-x)=3x-(x+1)#

Simplify both sides. On the right side, the opening of the bracket will convert the plus sign to a minus sign since the product of a positive and a negative is a negative.

#2-2x=3x-x-1#

#2-2x=2x-1#

Add #1# to both sides.

#2-2x+1=2x-1+1#

#3-2x=2x#

Add #2x# to both sides.

#3-2x+2x=2x+2x#

#3=4x#

Divide both sides by #4#.

#3/4=(4x)/4#

#3/4=(1cancel4x)/(1cancel4)#

#3/4=x# or #x=3/4#