Evaluate the integral #int \ sqrt(x-x^2)/x \ dx #?

2 Answers
Jul 21, 2017

#int sqrt(x-x^2)/x "d"x =xsqrt(1/x-1)-arctan(sqrt(1/x-1))+C#.

Explanation:

Note that the integrand requires #x>0#. For #x>0#, #x=sqrt(x^2)#. Then rewrite the integrand as,

#sqrt(x-x^2)/x=sqrt((x-x^2)/x^2)#.
#sqrt(x-x^2)/x=sqrt(1/x-1)#.

Then denote the required integral by #I#.

#I=int sqrt(1/x-1) "d"x#.

Make the substitution #u=sqrt(1/x-1)#. Then #"d"x = -2x^2sqrt(1/x-1)"d"u#. Then #I# is transformed to,

#I = -2 int x^2 (1/x-1) "d"u#.

From the definition of #u#, #1/x-1=u^2#. Then #x=1/(1+u^2)#, #x^2=1/(1+u^2)^2#. Then,

#I = -2 int u^2/(u^2+1)^2 "d"u#,
#I = - int u * (2u)/(u^2+1)^2 "d"u#.

Integration by parts states #int f'(u)g(u) "d"u = f(u)g(u) - int f(u)g'(u)"d"u#. Let #f'(u)= 2u/(u^2+1)^2#, #g(u)=u#.

A good general integration result to be aware of is, for #n != -1#,

#int p'(x) [p(x)]^(n) "d"x = ([p(x)]^(n+1))/(n+1)+C#.

This can be easily verified by differentiating the LHS.

Then as #f'(u)# is in this form we conclude #f(u) = -1/(u^2+1)#. Then, by parts,

#I = -(-1/(u^2+1)*u - int -1/(u^2+1)"d"u)#,
#I = u/(u^2+1) - int 1/(u^2+1) "d"u#,

Another general integration result to be aware of is #int 1/(u^2+1) "d"u = arctan(u) + C#. Then,

#I = u/(u^2+1) - arctan(u)+C#.

We know #u=sqrt(1/x-1)#. Then #u^2+1=1/x#. We conclude,

#I=xsqrt(1/x-1)-arctan(sqrt(1/x-1))+C#.

Jul 22, 2017

# int \ sqrt(x-x^2)/x \ dx = 1/2 arcsin(2x-1)+sqrt(x - x^2) + C#

Explanation:

We seek:

# I = int \ sqrt(x-x^2)/x \ dx #

We can start by completing the square of the numerator to get:

# x-x^2 = -(x^2-x) #
# " " = -{(x-1/2)^2-(1/2)^2} #
# " " = 1/4-(x-1/2)^2 #
# " " = 1/4{1-(2x-1)^2} #

So we can write:

# I = int \ sqrt(1/4{1-(2x-1)^2})/x \ dx #
# \ \ = 1/2 \ int \ sqrt(1-(2x-1)^2)/x \ dx #

Then comparing the numerator with #1-sin^2A# we could try a trig substitution of the form:

# sintheta = 2x-1 => cos theta (d theta)/dx = 2#, and #x=1/2(sin theta+1) #

Substituting this into the integral and we get:

# I = 1/2 \ int \ sqrt(1-sin^2 theta)/(1/2(sin theta+1)) \ 1/2cos theta \ d theta #
# \ \ = 1/2 \ int \ cos^2 theta/(sin theta+1) \ d theta #
# \ \ = 1/2 \ int \ (1-sin^2 theta)/(1+sin theta) \ d theta #
# \ \ = 1/2 \ int \ ((1+sin theta)(1-sin theta))/(1+sin theta) \ d theta #
# \ \ = 1/2 \ int \ 1-sin theta \ d theta #
# \ \ = 1/2 \ {theta+cos theta} + C#

And from the substitution we have:

# sin^2theta = (2x-1)^2 => cos^2 theta = 1 - (2x-1)^2 #
# :. cos^2 theta = 1 - 4x^2+4x-1 #
# " " = 4x - 4x^2 #

And so we can reverse the substitution to get:

# I = 1/2 \ {arcsin(2x-1)+sqrt(4(x - x^2))} + C#
# \ \ = 1/2 arcsin(2x-1)+sqrt(x - x^2) + C#