How do you solve #\sin \frac { 2x + 1} { x } + \sin \frac { 2x + 1} { 3x } - 3\cos ^ { 2} \frac { 2x + 1} { 3x } = 0#?

2 Answers
Jul 23, 2017

#x=1/(3arcsin((-1+sqrt(10))/3)+6npi-2)# or #x=1/(3(2n+1)pi-3arcsin((-1+sqrt(10))/3)-2)# where #n in Z#.

Explanation:

Let #(2x+1)/(3x)=u#.

Then,

#sin(u)+sin(u)-3cos^2(u)=0#.

Using the trigonometric identity #sin^2(u)+cos^2(u)=1#,

#2sin(u)-3(1-sin^2(u))=0#,
#3sin^2(u)+2sin(u)-3=0#.

This is a quadratic equation in #sin(u)# it has roots given by the quadratic formulae of

#sin(u) = (-2pmsqrt(4+4*9))/(2*3)#,
#sin(u) = (-1pmsqrt(10))/(3)#.

Then, the general solution to #sin(u)=K# is #u=arcsin(K)+2npi# or #u = pi(1+2n) - arcsin(K)# where #n in Z#.

Notice that #sqrt(10)>3# so then #-1-sqrt(10)<-4/3#. So then the only solution set we need consider is #sin(u) = (-1+sqrt(10))/(3)#, as #abs(sin(x))<=1#.

Then, the solution set for #sin(u)# is

#u=arcsin((-1+sqrt(10))/3)+2npi# or #u=-arcsin((-1+sqrt(10))/3)+(2n+1)pi# where #n in Z#.

If #(2x+1)/(3x)=K# then,

#2x+1=3Kx#,
#x(2-3K)=-1#,
#x=1/(3K-2)#.

Then the solution set for #x# is

#x=1/(3arcsin((-1+sqrt(10))/3)+6npi-2)# or #x=1/(3(2n+1)pi-3arcsin((-1+sqrt(10))/3)-2)# where #n in Z#.

Jul 23, 2017

Let #a=(2x+1)/(3x)#

So the given equation becomes

#sin3a+sina-3cos^2a=0#

#=>3sina-4sin^3a+sina-3cos^2a=0#

#=>4sina-4sin^3a-3cos^2a=0#

#=>4sina(1-sin^2a)-3cos^2a=0#

#=>4sinaxxcos^2a-3cos^2a=0#

#=>cos^2a(4sina-3)=0#

When #cos^2a=0#

#=>cosa=0#

#=>a=(2n+1)pi/2" where "n in ZZ#

#=>(2x+1)/(3x)=(2n+1)pi/2" where "n in ZZ#

#=>x((6n+3)pi/2-2)=1#

#=>x=1/((6n+3)pi/2-2)" where " n in ZZ#

When #sina=3/4=sinalpha#,

where #alpha=sin^-1(3/4)#

#=>a=npi+(-1)^nalpha" where " n in ZZ#

#=>(2x+1)/(3x)=npi+(-1)^nalpha" where " n in ZZ#

#=>x=1/(3(npi+(-1)^nalpha)-2)" where " n in ZZ#