How do you find the antiderivative of #cos^4 x dx#?

2 Answers
Jul 23, 2017

to find this integration or anti-derivative we use Reduction formula

Explanation:

Reduction formula
#intcos^n xdx=(cos^(n-1) xsinx)/n +(n-1)/n intcos^(n-2) x dx#

using n=4 we get

#intcos^4 xdx=(cos^(4-1) xsinx)/4 +(4-1)/4 intcos^(4-2) x dx#
#intcos^4 xdx=(cos^(3) xsinx)/4 +(3)/4 intcos^(2) x dx#
#intcos^4 xdx=(cos^(3) xsinx)/4 +(3)/4 int(1/2 cos2x+1/2)dx)#
#intcos^4 xdx=(cos^(3) xsinx)/4 +(3)/8 int(cos2x)dx+3/8 int1dx)#
#intcos^4 xdx=(cos^(3) xsinx)/4 +(3)/8 sinx cosx+3/8 x#
#intcos^4 xdx=1/32 (12x+8sin(2x)+sin4x)+C#

that is the right answer.

Jul 23, 2017

# 1/32{12x+8sin2x+sin4x}+C.#

Explanation:

Recall that, #cos2x=2cos^2x-1," so that, "cos^2x=(1+cos2x)/2.#

#:. cos^4x=((1+cos2x)/2)^2,#

#=1/4{1+2cos2x+cos^2(2x)},#

#=1/4{1+2cos2x+(1+cos4x)/2},#

#=1/8(3+4cos2x+cos4x).#

# rArr intcos^4xdx=1/8int(3+4cos2x+cos4x)dx,#

#=1/8{3x+4*sin(2x)/2+sin(4x)/4},#

#=1/32{12x+8sin2x+sin4x}+C.#