Show that #sum x/2^x = 2# summation running 0 to infinity ?

2 Answers
Jul 25, 2017

#sum_(n=0)^(\infty) n/2^n = 2#.

Explanation:

Suppose #{f_n}# and #{g_n}# are two sequences. Then,

#sum_(n=0)^N f_n (g_(n+1)-g_(n)) = f_(N+1)g_(N+1)-f_0g_0-sum_(n=0)^(N)g_(n+1)(f_(n+1)-f_(n))#.

This can be proved by investigating
#sum_(n=0)^N f_n(g_(n+1)-g_(n))+g_(n+1)(f_(n+1)-f_(n))#.

Expanding gives,

#sum_(n=0)^N f_ng_(n+1)-f_ng_(n)+g_(n+1)f_(n+1)-g_(n+1)f_(n)#,
#sum_(n=0)^N f_(n+1)g_(n+1)-f_ng_n#.

This is now a telescoping where all the terms cancel apart from the first and the last, giving

#sum_(n=0)^N f_(n+1)g_(n+1)-f_(n)g_(n)=f_(N+1)g_(N+1)-f_(0)g_(0)#.

Substituting,

#sum_(n=0)^N f_n(g_(n+1)-g_(n))+g_(n+1)(f_(n+1)-f_(n)) = f_(N+1)g_(N+1)-f_(0)g_(0)#,
#sum_(n=0)^N f_n (g_(n+1)-g_(n)) = f_(N+1)g_(N+1)-f_0g_0-sum_(n=0)^(N)g_(n+1)(f_(n+1)-f_(n))# as required.

Then, let #f_(n)=n# and let #g_(n+1)-g_(n)=2^(-n)#. We see that if #g_(n)=k2^(-n)# then

#g_(n+1)-g_(n)=k(2^(-(n+1))-2^(-n))#,
#g_(n+1)-g_(n)=k(1/2*2^(-n)-2^(-n))#,
#g_(n+1)-g_(n)=-(k)/2 2^(-n)#.

Then let #k=-2# giving #g_(n+1)-g_(n)=2^(-n)# for #g_(n)=-2*2^(-n)#

We conclude #f_(n)=n#, #g(n)=-2*2^(-n)#.

Substituting,

#sum_(n=0)^N n/2^n = -2(N+1)2^(-(N+1))+2sum_(n=0)^(N)2^(-(n+1))(n+1-n)#,
#sum_(n=0)^N n/2^n = -2(N+1)2^(-(N+1))+sum_(n=0)^(N)2^(-n)#,

By the sum of a geometric series,

#sum_(n=0)^N n/2^n = -2(N+1)2^(-(N+1))+(1-2^(-(N+1)))/(1-1/2)#,
#sum_(n=0)^N n/2^n = 2-2*2^(-(N+1))((N+1)+1)#,
#sum_(n=0)^N n/2^n = 2 - (N+2)2^(-N)#

As #N -> +\infty# #(N+2)2^(-N) -> 0#.

Then

#sum_(n=0)^(\infty) n/2^n = 2#.

Jul 25, 2017

See below.

Explanation:

Defining #S_n = sum_(k=0)^n x^k# or

#S_n = (x^(n+1)-1)/(x-1)#

for #abs x < 1# we have

#S_oo = lim_(n->oo)S_n = -1/(x-1)#

now

#sum_(k=0)^n k x^k = x ((dS_n)/(dx))# and

#sum_(k=0)^oo kx^k = x ((dS_oo)/(dx)) = x(d/dx)(1/(1-x)) = x/(x-1)^2#

and now making #x = 1/2# we obtain

#sum_(k=0)^oo kx^k = 2#