How do you divide #(48x ^ { 7} - 54x ^ { 5} + 30x ) \div 6x#?

2 Answers
Jul 26, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(48x^7 - 54x^5 + 30x)/(6x)#

Next, rewrite it again as:

#(48x^7)/(6x) - (54x^5)/(6x) + (30x)/(6x)#

Now, rewrite each of the numerators and simplify each of the separate terms:

#(6x * 8x^6)/(6x) - (6x * 9x^4)/(6x) + (6x * 5)/(6x)#

#(color(red)(cancel(color(black)(6x))) * 8x^6)/(color(red)(cancel(color(black)(6x)))) - (color(red)(cancel(color(black)(6x))) * 9x^4)/(color(red)(cancel(color(black)(6x)))) + (color(red)(cancel(color(black)(6x))) * 5)/(color(red)(cancel(color(black)(6x)))) =>#

#8x^6 - 9x^4 + 5#

Jul 27, 2017

#8x^6-9x^4+5#

Explanation:

#"to divide " (48x^7-54x^5+30x)/(6x)#

#"divide each term on the numerator by "6x#

#rArr(48x^7)/(6x)-(54x^5)/(6x)+(30x)/(6x)#

#=8x^6-9x^4+5larrcolor(red)" quotient"#