How do you derive #f(x)=x^5*3^(x^2-3*x+2)#?

1 Answer
Jul 27, 2017

# f'(x) = (5+(2x^2-3x)ln3)( x^4*3^(x^2-3x+2) )#

Explanation:

We have:

# f(x) = x^5*3^(x^2-3x+2) #

Take Natural Logarithms of both sides:

# ln f = ln {x^5*3^(x^2-3x+2)} #
# " " = ln (x^5) + ln (3^(x^2-3x+2)) #
# " " = (5ln x) + (x^2-3x+2)ln3 #

Differentiating Implicitly, we get:

# 1/f * (df)/(dx) = 5/x+(2x-3)ln3#
# " " = (5+(2x-3)xln3)/x#
# " " = (5+(2x^2-3x)ln3)/x #

And so:

# (df)/(dx) = (5+(2x^2-3x)ln3)/xf #
# " = " (5+(2x^2-3x)ln3)/x x^5*3^(x^2-3x+2) #
# " = " (5+(2x^2-3x)ln3)( x^4*3^(x^2-3x+2) )#