How do you solve #4a ^ { 2} + 4a + 5= 0#?

1 Answer
Jul 27, 2017

#a=-1/2+-i#

Explanation:

Given:

#4a^2+4a+5=0#

We can complete the square and use the difference of squares identity, but the solutions are non-real Complex ones.

The difference of squares identity can be written:

#A^2-B^2=(A-B)(A+B)#

Use this with #A=(2a+1)# and #B=2i# (where #i^2=-1#) as follows:

#0 = 4a^2+4a+5#

#color(white)(0) = 4a^2+4a+1+4#

#color(white)(0) = (2a)^2+2(2a)+1^2+2^2#

#color(white)(0) = (2a+1)^2-(2i)^2#

#color(white)(0) = ((2a+1)-2i)((2a+1)+2i)#

#color(white)(0) = (2a+1-2i)(2a+1+2i)#

Hence:

#2a=-1+-2i#

Dividing both sides by #2# we get:

#a=-1/2+-i#