Find the domain of the function #(x^3-3x+2)^(1/2)#?

1 Answer
Jul 31, 2017

The domain of #f(x)# is #x in [-2,+oo)#

Explanation:

Let

#f(x)=(x^3-3x+2)^(1/2)=sqrt(x^3-3x+2)#

Therefore,

#x^3-3x+2>=0#

Let

#g(x)=x^3-3x+2#

#g(1)=1-3+2=0#

So #(x-1)# is a factor of #g(x)#

We perform a long division

#color(white)(aaaa)##x-1##color(white)(aaaa)##|##x^3+0x^2-3x+2##color(white)(aaaa)##|##x^2+x-2#

#color(white)(aaaaaaaaaaaaaaa)##x^3-x^2#

#color(white)(aaaaaaaaaaaaaaaa)##0+x^2-3x#

#color(white)(aaaaaaaaaaaaaaaaaa)##+x^2-x#

#color(white)(aaaaaaaaaaaaaaaaaaa)##+0-2x+2#

#color(white)(aaaaaaaaaaaaaaaaaaaaaaa)##-2x+2#

#color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaa)##0+0#

So,

#g(x)=(x-1)(x^2+x-2)=(x-1)(x-1)(x+2)=(x-1)^2(x+2)#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaaa)##-2##color(white)(aaaaa)##-1##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+2##color(white)(aaaaaa)##-##color(white)(aaaa)##0##color(white)(aaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##(x-1)^2##color(white)(aaaa)##+##color(white)(aaaaa)##color(white)(aaa)##+##color(white)(aa)##0##color(white) (a)##+#

#color(white)(aaaa)##g(x)##color(white)(aaaaaaaa)##-##color(white)(aaa)##0##color(white)(aaa)##+##color(white)(aa)##0##color(white) (a)##+#

Therefore,

#g(x)>=0# when #x in [-2,+oo)#

The domain of #f(x)# is #x in [-2,+oo)#

graph{sqrt(x^3-3x+2) [-10, 10, -5, 5]}