How do you simplify #4/(sqrt2-5sqrt3)#?
1 Answer
Aug 3, 2017
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
Using this with
#4/(sqrt(2)-3sqrt(5)) = (4(sqrt(2)+3sqrt(5)))/((sqrt(2)-3sqrt(5))(sqrt(2)+3sqrt(5)))#
#color(white)(4/(sqrt(2)-3sqrt(5))) = (4(sqrt(2)+3sqrt(5)))/((sqrt(2))^2-(3sqrt(5))^2)#
#color(white)(4/(sqrt(2)-3sqrt(5))) = (4(sqrt(2)+3sqrt(5)))/(2-45)#
#color(white)(4/(sqrt(2)-3sqrt(5))) = -4/43(sqrt(2)+3sqrt(5))#
#color(white)(4/(sqrt(2)-3sqrt(5))) = -4/43sqrt(2)-12/43sqrt(5)#