How do you evaluate the integral #int x^3/sqrt(1-9x^2)#?
4 Answers
Explanation:
Let,
We substitute
# int \ x^3/(sqrt(1-9x^2)) \ dx = - 1/243 (2+9x^2)sqrt(1-9x^2) + c#
Explanation:
We want to evaluate:
# I = int \ x^3/(sqrt(1-9x^2)) \ dx #
Let
Substituting into the integral we get:
# I = -1/18 \ int \ x^2/(sqrt(1-9x^2)) \ (-18x) \ dx #
# \ \ = -1/18 \ int \ (1/9(1-u))/(sqrt(u)) \ du #
# \ \ = -1/162 \ int \ 1/(sqrt(u)) - sqrt(u) \ du #
# \ \ = -1/162 ( u^(1/2)/(1/2) - u^(3/2)/(3/2)) + c#
# \ \ = - 1/162 ( 2sqrt(u) - 2/3usqrt(u) ) + c#
# \ \ = - 1/162 ( 2/3(3-u)sqrt(u) ) + c#
# \ \ = - 1/243 (3-u)sqrt(u) + c#
And, if we restore the substitution we get:
# I = - 1/243 (3-1+9x^2)sqrt(1-9x^2) + c#
# \ \ = - 1/243 (2+9x^2)sqrt(1-9x^2) + c#
# int \ x^3/(sqrt(1-9x^2)) \ dx = -1/243 (2+9x^2)sqrt(1-9x^2) + c #
Explanation:
Alternatively, using a trigonometric substitution:
We want to evaluate:
# I = int \ x^3/(sqrt(1-9x^2)) \ dx #
Let
Substituting into the integral we get:
# I = int \ (1/3 sin theta)^3/(sqrt(1-sin^2 theta)) \ (cos theta/3) \ d theta #
# \ \ = 1/81 int \ (sin^3 theta cos theta)/(sqrt(cos^2 theta)) \ d theta #
# \ \ = 1/81 int \ sin^3 theta \ d theta #
# \ \ = 1/81 (1/3cos^3 theta -cos theta ) + c #
# \ \ = -1/243 (3-cos^2 theta)costheta + c #
Using the identity
And, if we restore the substitution, using the above relationship, we get:
# I = -1/243 (3-1+9x^2)sqrt(1-9x^2) + c #
# \ \ = -1/243 (2+9x^2)sqrt(1-9x^2) + c #
Explanation:
Evaluate:
Substitute:
as the integrand is defined only for
Now:
as for
To undo the substitution:
so: