How do we find the derivative of #tanx# from first principal?
1 Answer
Aug 4, 2017
Explanation:
According to first principal, if
Here we have
hence
and
#=Lt_(deltax->0)(sin(x+deltax)/cos(x+deltax)-sinx/cosx)/(deltax)#
#=Lt_(deltax->0)(sin(x+deltax)cosx-cos(x+deltax)sinx)/(cosxcos(x+deltax)deltax)#
#=Lt_(deltax->0)(sin(x+deltax-x))/(cosxcos(x+deltax)deltax)#
#=Lt_(deltax->0)(sin(deltax)/(deltax) xx1/(cosxcos(x+deltax)))#
#=1xxsec^2x=sec^2x#