If #a+b+c !=0# and #a^3+b^3+c^3-3abc=0#, then what will be the relation between #a#, #b#. and #c#?

2 Answers
Aug 7, 2017

See below.

Explanation:

Considering that

#(a+b+c)^3-(a^3 + b^3 + c^3 - 3 a b c) = 3(a+b+c)(ab+bc+ac)#

then if #(a+b+c) ne 0# we have

#(a+b+c)^2= 3(ab+bc+ac)# and finally

#a+b+c = pm sqrt3 sqrt(ab+bc+ac)#

NOTE:

#0=(a+b+c)^2- 3(ab+bc+ac) = a^2+b^2+c^2-(ab+ac+bc) = 1/2((a-b)^2+(b-c)^2+(a-c)^2)=0#

Aug 7, 2017

#a=b=c#

Explanation:

As it given that,
#a^3+b^3+c^3-3abc=0# then
#(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0#
since,
#a+b+c# not equal to #0# so,
#a^2+b^2+c^2-ab-bc-ca=0#
multiplying both sides by #2#
#2a^2+2b^2+2c^2-2ab-2bc-2ca=0# or
#(a-b)^2+(b-c)^2+(c-a)^2=0#
to satisfy the equation,
#(a-b)^2=0,(b-c)^2=0# and#(c-a)^2=0 rArr a=b,b=c,c=a#
hence
#a=b=c# proved