How do you simplify #(sqrt6-3)(sqrt6+4)#?

1 Answer
Aug 8, 2017

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(sqrt(6)) - color(red)(3))(color(blue)(sqrt(6)) + color(blue)(4))# becomes:

#(color(red)(sqrt(6)) xx color(blue)(sqrt(6))) + (color(red)(sqrt(6)) xx color(blue)(4)) - (color(red)(3) xx color(blue)(sqrt(6))) - (color(red)(3) xx color(blue)(4))#

#6 + 4sqrt(6) - 3sqrt(6) - 12#

We can now group and combine like terms:

#6 - 12 + 4sqrt(6) - 3sqrt(6)#

#(6 - 12) + (4 - 3)sqrt(6)#

#-6 + 1sqrt(6)#

#-6 + sqrt(6)#