How do we differentiate #ln((x^2)/((x + 3)(x^2 - 1)))#?
1 Answer
Aug 8, 2017
Explanation:
We use the properties of logarithms to simplify first.
Call the function
#y = ln(x^2) - ln(x + 3) - ln(x^2 - 1)#
Note that
#y = ln(x^2) - ln(x +3) - ln((x + 1)(x -1))#
#y = ln(x^2) - ln(x + 3) - (ln(x + 1) + ln(x - 1))#
#y = ln(x^2) - ln(x + 3) - ln(x + 1) - ln(x - 1)#
Now use
#y = 2lnx - ln(x + 3) - ln(x + 1) - ln(x -1)#
We know that
#y' =2/x - 1/(x + 3) - 1/(x + 1) - 1/(x - 1)#
This is our answer.
Hopefully this helps!