Is #f(x)=1-x-e^(x)/x^2# concave or convex at #x=-1#?
1 Answer
Convex
Explanation:
The second derivative is determinative of concavity. Start by finding the first derivative.
#f'(x) = -1 - (e^x(x^2) - e^x(2x))/(x^2)^2#
#f'(x) = 1 - (x(xe^x - 2))/x^4#
#f'(x) = 1 - (xe^x - 2)/x^3#
Now differentiate this.
#f''(x) = 0 - ((e^x + xe^x)x^3 - (xe^x - 2)(3x^2))/(x^3)^2#
#f''(x) = - (x^3e^x + x^4e^x - 3x^3e^x + 6x^2)/x^6#
#f''(x) = -(x^4e^x - 2x^3e^x + 6x^2)/x^6#
We now evaluate the point within the second derivative.
#f''(-1) = -((-1)^4e^-1 - 2(-1)^3e^-1 + 6(-1)^2)/(-1)^6#
#f''(-1) = -(1/e -2(-1)/e + 6)/1#
#f''(-1) =- (1/e + 2/e + 6)/1#
This is obviously negative, therefore, the function is convex at
graph{1 - x - e^x/x^2 [-10, 10, -5, 5]}
Hopefully this helps!