What is #(3/2+4/7)/((15/8-3/4)-((4+3)/(-4+3))#?

1 Answer
Aug 9, 2017

#116/455#(assuming no arithmetic errors on my part)

Explanation:

Given the expression:
#color(white)("XXX")(color(blue)(3/2+4/7))/(color(red)((15/8-3/4))-color(magenta)(((4+3)/(-4/3)))#

Simplifying each component separately:
#color(blue)(3/2+4/7)=21/14+8/14=color(blue)(29/14)#

#color(red)((15/8-3/4))=15/8-6/8=color(red)(9/8)#

#color(magenta)(((4+3)/(-4/3))=7/(-1)=color(magenta)(-7)#

#color(red)((15/8-3/4))-color(magenta)(((4+3)/(-4/3))=color(red)(9/8)-(color(magenta)(-7))=9/8+56/8=color(green)(65/8)#

#(color(blue)(3/2+4/7))/(color(red)((15/8-3/4))-color(magenta)(((4+3)/(-4/3))))=(color(blue)(29/14))/(color(green)(65/8))=color(blue)(29/cancel(14)_7)xxcolor(green)(cancel(8)^4/65)=116/455#