How do you find the equation of the line tangent to #y=(x^2)e^(x+2)# at x=2?

1 Answer
Aug 10, 2017

#y=8e^4x-12e^4#

Explanation:

#•color(white)(x)dy/dx=m_(color(red)"tangent")" at x = a"#

#"differentiate using the "color(blue)"product rule"#

#"given "y=g(x).h(x)" then "#

#dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"#

#g(x)=x^2rArrg'(x)=2x#

#h(x)=e^((x+2))rArrh'(x)=e^((x+2))#

#rArrdy/dx=x^2e^((x+2))+2xe^((x+2))#

#"at x = 2"#

#dy/dx=4e^4+4e^4=8e^4#

#" and " y=4e^4#

#"using "m=8e^4" and "(x_1,y_1)=(2,4e^4)#

#y-4e^4=8e^4(x-2)#

#rArry=8e^4x-12e^4#