How do you find the derivative of #arcsin sqrt(2x)#?
1 Answer
Aug 10, 2017
Explanation:
#•color(white)(x)d/dx(sin^-1x)=1/sqrt(1-x^2)#
#•color(white)(x)d/dx(sin^-1(f(x)))=1/sqrt(1-(f(x))^2)xxf'(x)#
#rArrd/dx(sin^-1(sqrt(2x)))#
#=1/sqrt(1-2x)xxd/dx(sqrt2x^(1/2))#
#=1/sqrt(1-2x)xx1/2sqrt2x^(-1/2)#
#=sqrt2/(sqrt(4x(1-2x))#