The series #sum_(n=1)^oo x^n/10^n # converges for #|x| lt beta#, find #beta#?

1 Answer
Aug 12, 2017

#beta=10#

Explanation:

We can apply d'Alembert's ratio test:

Suppose that;

# S=sum_(n=1)^oo a_n \ \ #, and #\ \ L=lim_(n rarr oo) |a_(n+1)/a_n| #

Then

if L < 1 then the series converges absolutely;
if L > 1 then the series is divergent;
if L = 1 or the limit fails to exist the test is inconclusive.

Our series is;

# S = sum_(n=1)^oo a_n # with # a_n=x^n/10^n #

So our test limit is:

# L = lim_(n rarr oo) | ( x^(n+1)/10^(n+1) ) / ( x^n/10^n) | #
# \ \ \ = lim_(n rarr oo) | ( x^(n+1)/10^(n+1) ) * ( 10^n/x^n ) | #
# \ \ \ = lim_(n rarr oo) | ( (x x^n)/(10 * 10^n) ) * ( 10^n/x^n ) | #
# \ \ \ = lim_(n rarr oo) | x/10 | #
# \ \ \ = | x/10 | #

Comparing with the definition of the question, we can conclude that the series converges if #L lt 1#

# | x/10 | lt 1 => |x| lt 10 #

Similarly, the series diverges if #L gt 1#

# | x/10 | gt 1 => |x| gt 10 #

Hence, #beta=10#