Question #7fb9f

2 Answers
Aug 12, 2017

#beta=e#

Explanation:

We can apply d'Alembert's ratio test:

Suppose that;

# S=sum_(r=1)^oo a_n \ \ #, and #\ \ L=lim_(n rarr oo) |a_(n+1)/a_n| #

Then

if L < 1 then the series converges absolutely;
if L > 1 then the series is divergent;
if L = 1 or the limit fails to exist the test is inconclusive.

Our series is;

# S = sum_(n=1)^oo a_k # with # a_n=(x^n n!)/n^n #

So our test limit is:

# L = lim_(n rarr oo) | (( x^(n+1)(n+1)!)/( (n+1)^(n+1) ) )/ (( x^n n!)/n^n ) | #
# \ \ \ = lim_(n rarr oo) | ( x^(n+1)(n+1)!)/( (n+1)^(n+1) ) * (n^n)/( x^n n!) | #
# \ \ \ = lim_(n rarr oo) | ( x x^n(n+1)n!)/( (n+1)(n+1)^n ) * (n^n)/( x^n n!) |#
# \ \ \ = lim_(n rarr oo) | ( x )/( (n+1)^n ) * n^n | #
# \ \ \ = |x| \ lim_(n rarr oo) | ( n/(n+1))^n | #
# \ \ \ = |x| \ 1/e #
# \ \ \ = |x/e| #

Comparing with the definition of the question, we can conclude that the series converges if #L lt 1#

# | x/e | lt 1 => |x| lt e #

Similarly, the series diverges if #L gt 1#

# | x/1e| gt 1 => |x| gt e #

Hence, #beta=e#

Aug 12, 2017

See below.

Explanation:

Using the asymptotic Stirling formula

#k! approx sqrt(2pi k)(k/e)^k# we have

#sum_(k=1)^oo (x^k k!)/k^k approx sum_(k=1)^oo sqrt(2pi k) (x/e)^k# and also

#sum_(k=1)^oo (x/e)^k le sum_(k=1)^oo sqrt(2pi k) (x/e)^k le esum_(k=1)^oo (k+1)/e(x/e)^k#

so we conclude that the convergence is for #abs(x/e) < 1# or #absx < e#