How do you solve #x+ 3= \frac { 15- x } { 2x }#?

1 Answer
Aug 14, 2017

#x=1 1/2# or #x=-5#

Explanation:

Given
#color(white)("XXX")x+3=(15-x)/(2x)#

Multiplying both sides by #2x#
#color(white)("XXX")2x^2+6x=15-x#

Re-arranging the terms as a standard quadratic:
#color(white)("XXX")2x^2+7x-15=0#

Factoring the left side
#color(white)("XXX")(2x-3)(x+5)=0#

Which implies
#color(white)("XXX"){:(2x-3=0," or ", x+5=0),(x=3/2,,x=-5):}#