How do you evaluate #(a ^ { 3} - 5a + 2) ( a ^ { 2} - a + 5) #?

2 Answers
Aug 14, 2017

#=a^5-a^4+7a^2-27a+10#

Explanation:

Each term in the first bracket has to be multiplied by each term in the second bracket. This will give #9# terms before simplifying them.

#(color(blue)(a^3) color(forestgreen)(-5a) color(red)(+2))(a^2 -a+5)#

#=color(blue)(a^3)(a^2 -a+5) color(forestgreen)(-5a)(a^2 -a+5) color(red)(+2)(a^2 -a+5))#

Using the distributive law gives:

#=color(blue)(a^5-a^4+5a^3)color(forestgreen)(-5a^3+5a^2-25a)color(red)(+2a^2-2a+10)#

Add like terms:

#=a^5-a^4+7a^2-27a+10#

Aug 14, 2017

#color(green)(a^5-a^4+7a^2-27a+10)#

Explanation:

#color(white)(aaaaaaaaaaaaa)##a^3-5a+2#
#color(white)(aaaaaaaaaaa)## xx a^2-a+5#
#color(white)(aaaaaaaaaaaaa)##overline(a^5+0-5a^3+2a^2)#
#color(white)(aaaaaaaaaaaaa)##0-a^4+0+5a^2-2a#
#color(white)(aaaaaaaaaaaaa)##0+0+5a^3+0-25a+10#
#color(white)(aaaaaaaaaaaaa)##overline(a^5-a^4+0+7a^2-27a+10#

#color(green)(a^5-a^4+7a^2-27a+10#