How do you evaluate the integral #int tan(3x-5)dx#?

3 Answers
Aug 15, 2017

# 1/3ln|sec(3x-5)|+C.#

Explanation:

If we subst. #(3x-5)=t," then, "3dx=dt.#

#:. I=inttan(3x-5)dx=1/3inttan(3x-5)(3)dx,#

#=1/3inttan t dt,#

#=1/3ln|sec t|,#

# rArr I=1/3ln|sec(3x-5)|+C.#

Aug 15, 2017

#\frac{ln|sec(3x - 5)|}{3} + C#

Explanation:

We're going to use u-substitution:

#u = 3x - 5#
#du = 3 dx#

Keep in mind the above statement also means that:

#\frac{1}{3}du = dx#

After u-substitution the integral becomes:

#\int \frac{1}{3}tan(u) du#

We can take out the #\frac{1}{3}#:

#\frac{1}{3} \int tan(u) du#

Which we know is equal to:

#\frac{1}{3}ln|sec(u)| + C#

Now you just plug in the original value of u:

#\frac{1}{3}ln|sec(3x - 5)| + C#

and that's your answer :P

Aug 15, 2017

The answer is #=-1/3ln|cos(3x-5)|+C#

Explanation:

We perform this integral by substitution

Let #u=3x-5#, #=>#, #du=3dx#

#inttan(3x-5)dx=1/3inttanudu#

#=1/3int(sinudu)/cosu#

Let #v=cosu#, #=>#, #dv=-sinudu#

#1/3int(sinudu)/cosu=-1/3int(dv)/v#

#=-1/3ln|v|#

#=-1/3ln|cosu|#

#=-1/3ln|cos(3x-5)|+C#