How do we prove that #1+cos^2 2x=2(cos^4x+sin^4x)#?

2 Answers
Aug 25, 2017

#LHS=1+cos^2 2x#

#=(cos^2x+sin^2x)^2+(cos^2x-sin^2x)^2#

#=cos^4x+sin^4x+2cos^2xsin^2x+cos^4x+sin^4x-2cos^2xsin^2x#

#=2(cos^4x+sin^4x)=RHS#

Refer to the Explanation.

Explanation:

Using,

#2(a^2+b^2)=(a+b)^2+(a-b)^2,# with, #a=cos^2x, b=sin^2x,#

we have,

#2(cos^4x+sin^4x)=(cos^2x+sin^2x)^2+(cos^2x-sin^2x)^2#

#=1+cos^2 2x,# as desired.