Question #fcb11

1 Answer
Aug 31, 2017

You are correct: #intsqrt(x^2-1)/x^2dx=lnabs(x+sqrt(x^2-1))-sqrt(x^2-1)/x+C#

Explanation:

#I=intsqrt(x^2-1)/x^2dx#

I'm sure there are other methods of approach, but when I see square roots I immediately think of trig substitutions. Let's try #x=sectheta#, implying that #x^2-1=sec^2theta-1=tan^2theta# and that #dx=secthetatanthetad theta#:

#I=intsqrt(tan^2theta)/sec^2theta(secthetatanthetad theta)#

#I=inttan^2theta/secthetad theta#

#I=int(sec^2theta-1)/secthetad theta#

#I=int(sectheta-costheta)d theta#

#I=lnabs(sectheta+tantheta)-sintheta+C#

The substitution #x=sectheta# implies the following:

  • #tantheta=sqrt(sec^2theta-1)=sqrt(x^2-1)#
  • #costheta=1/x#
  • #sintheta=sqrt(1-cos^2theta)=sqrt(1-1/x^2)=sqrt(x^2-1)/x#

Thus:

#I=lnabs(x+sqrt(x^2-1))-sqrt(x^2-1)/x+C#

You were right!