First, expand the terms on the left side of the equation in parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:
#color(red)(-4)(4x - 4) = -10#
#(color(red)(-4) xx 4x) - (color(red)(-4) xx 4) = -10#
#-16x - (-16) = -10#
#-16x + 16 = -10#
Next, subtract #color(red)(16)# from each side of the equation to isolate the #x# term while keeping the equation balanced:
#-16x + 16 - color(red)(16) = -10 - color(red)(16)#
#-16x + 0 = -26#
#-16x = -26#
Now, divide each side of the equation by #color(red)(-16)# to solve for #x# while keeping the equation balanced:
#(-16x)/color(red)(-16) = -26/color(red)(-16)#
#(color(red)(cancel(color(black)(-16)))x)/cancel(color(red)(-16)) = (-2 xx 13)/color(red)(-2 xx 8)#
#x = (color(red)(cancel(color(black)(-2))) xx 13)/color(red)(color(black)(cancel(color(red)(-2))) xx 8)#
#x = 13/8#