If #w( n ) = 5^ { n + 1} # , what is #w(-1)#?

2 Answers
Aug 31, 2017

See a solution process below:

Explanation:

To find #w(-1)# substitute #color(red)(-1)# for each occurrence of #color(red)(n)# in #w(n)#:

#w(color(red)(n)) = 5^(color(red)(n) + 1)# becomes:

#w(color(red)(-1)) = 5^(color(red)(-1) + 1)#

#w(color(red)(-1)) = 5^0#

#w(color(red)(-1)) = 1#

Aug 31, 2017

#w(-1) = 1#

Explanation:

#w(n) = 5^(n+1)#
#" "darr#
#w(-1)" "# means #n = -1#

#w(-1) = 5^(-1+1) = 5^0#

#5^0=1#