Question #34e5a
1 Answer
Explanation:
#I=intx^2/(x^2-9)^(3/2)dx#
Use the substitution
#I=int(9sec^2theta)/(9tan^2theta)^(3/2)(3secthetatanthetad theta)#
#I=int(27sec^3thetatantheta)/(27tan^3theta)d theta#
#I=intsec^3theta/tan^2thetad theta#
#I=int1/cos^3thetacos^2theta/sin^2theta#
#I=intcsc^2thetasecthetad theta#
Use
#I=int(cot^2theta+1)secthetad theta#
#I=int(cos^2theta/sin^2theta 1/costheta+sectheta)d theta#
#I=int(cotthetacsctheta+sectheta)d theta#
These have common integrals:
#I=-csctheta+lnabs(sectheta+tantheta)+C#
Our original substitution was
#tantheta="opp"/"adj"=sqrt(x^2-9)/3# #csctheta=1/sintheta="hyp"/"opp"=x/sqrt(x^2-9)#
Hence:
#I=lnabs(x/3+sqrt(x^2+9)/3)-x/sqrt(x^2-9)+C#
Factor
#I=lnabs(x+sqrt(x^2-9))-x/sqrt(x^2-9)+C#