How do you implicitly differentiate #csc(x^2/y^2)=e^(xy) #?
1 Answer
Explanation:
Implicit differentiation is no different from explicit differentiation. Just remember that differentiating a function of
#csc(x^2/y^2)=e^(xy)#
#d/dxcsc(x^2/y^2)=d/dxe^(xy)#
#-csc(x^2/y^2)cot(x^2/y^2)*d/dx(x^2y^-2)=e^(xy)*d/dx(xy)#
Use the product rule to find these derivatives. Recall that while
#-csc(x^2/y^2)cot(x^2/y^2)(2xy^-2-2x^2y^-1dy/dx)=e^(xy)(y+xdy/dx)#
Expanding and rearranging to group
#((2x^2csc(x^2/y^2)cot(x^2/y^2))/y-xe^(xy))dy/dx=(2xcsc(x^2/y^2)cot(x^2/y^2))/y^2+ye^(xy)#
Common denominators:
#((2x^2csc(x^2/y^2)cot(x^2/y^2)-xye^(xy))/y)dy/dx=(2xcsc(x^2/y^2)cot(x^2/y^2)+y^3e^(xy))/y^2#
Solving for
#dy/dx=(2xcsc(x^2/y^2)cot(x^2/y^2)+y^3e^(xy))/y^2*y/(2x^2csc(x^2/y^2)cot(x^2/y^2)-xye^(xy))#
#dy/dx=(2xcsc(x^2/y^2)cot(x^2/y^2)+y^3e^(xy))/(xy(2xcsc(x^2/y^2)cot(x^2/y^2)-ye^(xy))#