How can i solve this integral? #int (2/(5x)sqrt (3+4/x^2)dx#

1 Answer
Sep 2, 2017

I got: #(2sqrt3)/5lnabs((3x^2+4)/(2sqrt3x)+(sqrt3x)/2-2/(sqrt3x))+C#

Explanation:

#I=int2/(5x)sqrt(3+4/x^2)dx#

Use the substitution #x=2/sqrt3cottheta#. This implies that #dx=(-2)/sqrt3cotthetacscthetad theta#.

#I=2/5intsqrt3/2tanthetasqrt(3+4(sqrt3/2tantheta)^2)((-2)/sqrt3cotthetacscthetad theta)#

Canceling #sqrt3/2tantheta(2/sqrt3cottheta)=1#:

#I=(-2)/5intcscthetasqrt(3+3tan^2theta)d theta#

Factoring #sqrt3#, the radical becomes #sqrt(1+tan^2theta)=sectheta#:

#I=(-2sqrt3)/5int(d theta)/(sinthetacostheta)#

Note that #sinthetacostheta=1/2sin2theta#:

#I=(-4sqrt3)/5int(d theta)/(sin2theta)#

#I=(-4sqrt3)/5intcsc2thetad theta#

The integral of cosecant is fairly standard. Look it up here if you aren't sure.

Note that I'll use the form #intcscx=-lnabs(cscx+cotx)#, which is equivalent to #lnabs(cscx-cotx)#. I'm choosing the first one so the minus sign will cancel with the minus sign already outside the integral.

You'll also need to undo the #2theta# by multiplying the integral by #1//2#.

#I=(2sqrt3)/5lnabs(csc2theta+cot2theta)+C#

Use #csc2theta=1/(sin2theta)=1/(2sinthetacostheta)# and #tan2theta=(2tantheta)/(1-tan^2theta)#:

#I=(2sqrt3)/5lnabs(1/(2sinthetacostheta)+(1-tan^2theta)/(2tantheta))+C#

Before proceeding we can factor #2# from both these denominators and remove #(-2sqrt3)/5ln2# from the logarithm using #log(A//B)=logA-logB#. This constant is absorbed into #C#.

#I=(2sqrt3)/5lnabs(cscthetasectheta+cottheta-tantheta)+C#

Our original substitution was #cottheta=(sqrt3x)/2#. Thus:

  • #tantheta=1/cottheta=2/(sqrt3x)#
  • #csctheta=sqrt(cot^2theta+1)=sqrt(3x^2+4)/2#
  • #sectheta=sqrt(tan^2theta+1)=sqrt(3x^2+4)/(sqrt3x)#

So:

#I=(2sqrt3)/5lnabs((3x^2+4)/(2sqrt3x)+(sqrt3x)/2-2/(sqrt3x))+C#