How to integrate? #int sec^3 x cot^2 x dx#
1 Answer
Sep 4, 2017
Explanation:
#=intsecxcsc^2xdx=intsecx(cot^2x+1)dx#
#=int(1/cosxcos^2x/sin^2x+secx)dx#
#=int(1/sinxcosx/sinx+secx)dx=int(cscxcotx+secx)dx#
#=-cscx+lnabs(secx+tanx)+C#