Calculate #int_0^(2pi) cos^2x .dx#?

A) Zero
B) 2
C) 1/2
D) #pi#
The answer is D for your reference

2 Answers
Sep 5, 2017

Yes, the correct answer is #D#, or #pi#.

Explanation:

Use the power reduction formula

#cos^2x= (1 + cos2x)/2#.

So we have:

#I = int_0^(2pi) (1 + cos2x)/2#

#I = 1/2int_0^(2pi) 1 + cos(2x)dx#

#I = 1/2int_0^(2pi) 1 dx + 1/2int_0^(2pi) cos(2x)dx#

If we let #u = 2x# in the second integral, then #1/2du = dx#. The integral of #cosu# is #sinu# and reverse your substitution to get #sin(2x)#.

#I = 1/2[x]_0^(2pi) + 1/2(1/2)[sin(2x)]_0^(2pi)#

The integral equals

#I = 1/2(2pi) + 1/4(sin(4pi) - sin(0))#

#I = pi - 1/4(0 - 0)#

#I = pi#

Answer #D#, as required.

Hopefully this helps!

Sep 6, 2017

#int_0^(2pi)cos^2(x)dx#

We can rewrite this:

#int_0^(2pi)cos^2(x)dx=int_0^(2pi)(cos^2(x)-sin^2(x)+sin^2(x))dx#

Note that #cos(2x)=cos^2(x)-sin^2(x)#:

#int_0^(2pi)cos^2(x)dx=int_0^(2pi)cos(2x)dx+int_0^(2pi)sin^2(x)dx#

Rewrite #sin^2(x)# using #sin^2(x)+cos^2(x)=1#:

#int_0^(2pi)cos^2(x)dx=int_0^(2pi)cos(2x)dx+int_0^(2pi)(1-cos^2(x))dx#

#int_0^(2pi)cos^2(x)dx=int_0^(2pi)cos(2x)dx+int_0^(2pi)dx-int_0^(2pi)cos^2(x)dx#

Add #int_0^(2pi)cos^2(x)dx# to both sides of the equation:

#2int_0^(2pi)cos^2(x)dx=int_0^(2pi)cos(2x)dx+int_0^(2pi)dx#

Evaluate these integrals:

#2int_0^(2pi)cos^2(x)dx=|1/2sin(2x)|_0^(2pi) +x|_0^(2pi)#

#2int_0^(2pi)cos^2(x)dx=1/2(sin(4pi)-sin(0))+(2pi-0)#

#2int_0^(2pi)cos^2(x)dx=2pi#

Dividing by #2#:

#int_0^(2pi)cos^2(x)dx=pi#