What is the derivate for #2013root2013x# ?
1 Answer
Sep 8, 2017
Explanation:
Rewrite the radical using
#2013root2013x=2013x^(1//2013)#
Now use the power rule:
#d/dx2013x^(1//2013)=2013(1/2013)x^((-2012)/2013)#
#=1/x^(2012/2013)=1/root2013(x^2012)#