How do you find the derivative of #(x^2)(sinx)(tanx)#?
1 Answer
Sep 9, 2017
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"the rule for differentiating the product of 3 functions is"#
#"given "y=f(x)g(x)h(x)" then"#
#dy/dx=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'(x)#
#f(x)=x^2rArrf'(x)=2x#
#g(x)=sinxrArrg'(x)=cosx#
#h(x)=tanxrArrh'(x)=sec^2x#
#"hence derivative"#
#=2xsinxtanx+x^2cosxtanx+x^2sinxsec^2x#