Question #ba1d3

1 Answer
Sep 10, 2017

e) #8x-3#

Explanation:

When you see (x+h) in the first principles formula, wherever you'd normally put #x# put #(x+h)#

#lim_(h->0)##(4(x+h)^2-3(x+h)+5-(4x^2-3x+5))/h# substituting

#lim_(h->0)##(4(x^2+h^2+2xh)-3x-3h+5-4x^2+3x-5)/h# expanding

#lim_(h->0)##(4x^2+4h^2+8xh-3x-3h+5-4x^2+3x-5)/h#

quite a lot of these terms will cancel:

#lim_(h->0)##(4h^2+8xh-3h)/h#

= #lim_(h->0)##4h+8x-3#

now look at the limit - as h goes to zero, what happens?

#4(0)+8x-3 = 8x-3#