How do we simplify #(3a^(-5)b^2)/(18ab^(-3))# and get the answer in the positive exponential notation?

1 Answer
Sep 12, 2017

#(b^5)/(6a^6)#

Explanation:

#"using the "color(blue)"law of exponents"#

#•color(white)(x)a^m/a^n=a^((m-n))tom>n#

#•color(white)(x)a^m/a^n=1/a^((n-m))ton>m#

#"separate the fraction into product of like factors"#

#rArr(3a^-5b^2)/(18ab^-3)#

#=3/18xxa^-5/a^1xxb^2/b^-3#

#=cancel(3)^1/cancel(18)^6xx1/a^(1-(-5))xxb^(2-(-3))#

#=1/6xx1/a^6xxb^5/1#

#=(1xx1xxb^5)/(6xxa^6xx1)=b^5/(6a^6)larrcolor(red)" positive exponent form"#