This point is in cylindrical form (r, theta, z). So let's first convert it to rectangular form (x,y,z) by using the formulas x=rcos theta, y=r sin theta, z=z
That is,
x=1*cos(pi/4)=1/sqrt2, y=1*sin(pi/4)=1/sqrt2, z=2
hence, the point is (1/sqrt2, 1/sqrt2, 2).
Now let's use the formulas
rho^2 = x^2 + y^2 +z^2, x=rho sin phi cos theta, y=rho sin phi sin theta, z=rho cos phi to change the point to spherical coordinates.
rho = sqrt ((1/sqrt2)^2 +(1/sqrt2)^2+(2)^2) = sqrt (1/2 + 1/2 + 4) = sqrt5
To find phi let's use the formula z=rho cos phi
Therefore,
z=rho cos phi
2=sqrt 5 cos phi
cos^-1(2/sqrt 5)=phi
phi~~0.46
:. (rho, theta, phi)~~(sqrt5, pi/4,0.46) ~~(2.24, 0.79,0.46)