How do you multiply and simplify #(( - x - 8) ( x - 1))/( x + 8) xx ( x + 5) / ( 9x - 9)#?

2 Answers
Sep 19, 2017

#color(magenta)((-x-5)/9#

Explanation:

#((-x-8)(x-1))/((x+8))xx((x+5))/((9x-9))#

#:.=((-x-8)(x-1))/((x+8))xx((x+5))/((9x-9))#

#:.=((-x-8)cancel((x-1)))/((x+8))xx((x+5))/(9cancel((x-1)))#

#:.=((-x-8)(x+5))/((9x+8))#

#:.=(-x^2-13x-40)/(9(x+8))#

#:.=((-x-5)cancel((x+8)))/(9cancel((x+8)))#

#:.color(magenta)(=(-x-5)/9#

Sep 19, 2017

To multiply fractions, you multiply the numerators and the denominators respectively.
To simply, you cancel any factors that are common to the numerator and denominator.

Explanation:

To multiply fractions, you multiply the numerators and the denominators respectively:

#(( - x - 8) ( x - 1))/( x + 8) xx ( x + 5) / ( 9x - 9) = (( - x - 8) ( x - 1)( x + 5) )/(( x + 8)( 9x - 9))#

A common factor becomes obvious if we write #( - x - 8)" as " -1(x+8)#:

#(( - x - 8) ( x - 1))/( x + 8) xx ( x + 5) / ( 9x - 9) = (-1(x+8) ( x - 1)( x + 5) )/(( x + 8)( 9x - 9))#

Cancel the common factor:

#(( - x - 8) ( x - 1))/( x + 8) xx ( x + 5) / ( 9x - 9) = (-1( x - 1)( x + 5) )/(( 9x - 9))#

Another common factor becomes obvious if we write #9x-9" as "9(x-1)#:

#(( - x - 8) ( x - 1))/( x + 8) xx ( x + 5) / ( 9x - 9) = (-1( x - 1)( x + 5) )/(9(x -1))#

Cancel the common factor:

#(( - x - 8) ( x - 1))/( x + 8) xx ( x + 5) / ( 9x - 9) = (-1( x + 5))/9#

Move the #-1/9# to the front:

#(( - x - 8) ( x - 1))/( x + 8) xx ( x + 5) / ( 9x - 9) = -1/9(x+5)#