How do you simplify #\frac { \frac { 9x } { x ^ { 2} - 9} } { \frac { 8x - 48} { 2x + 6} }#?

1 Answer
Sep 21, 2017

#(9x )/(4(x - 3)(x - 6))#

#= (9x )/(4 ( x^2 - 9x + 18))#

Explanation:

#(9x )/( x ^ { 2} - 9) div ( 8x - 48) / (2x + 6 ) #

=#(9x )/ ( x ^ { 2} - 9) xx (2x + 6 )/ ( 8x - 48)#

= # (9x )/(( x - 3)(x + 3)) xx (2(x +3) )/ ( 8(x - 6)) #

=#(9x )/(( x - 3)(x + 3))xx((x +3) )/ ( 4(x - 6))#

=#(9x )/(( x - 3))xx (1 )/ ( 4(x - 6))" "# cancelling the like terms #(x+3)# from #color(white)(wwwwwwwwwwwwwwww)#numerator and denominator.

=#(9x )/(( x - 3))xx(1 )/ ( 4(x - 6))#

=#(9x )/(4(x - 3)(x - 6))" "# you can leave it like this or:

=# (9x )/(4 ( x^2 - 9x + 18) )#