#[(\frac{-1}{3})^{3}+(\frac{2}{5})^{3}-(\frac{3}{10})^{3}]\div \frac{11}{100}#
As #\(frac{a}{b})^m = \frac {a^m}{b^m}#
= #[(\frac{-1}{27})+(\frac{8}{125})-(\frac{27}{1000})]\div \frac{11}{100}#
= #[(\frac{-1}{27})+(\frac{8}{125})-(\frac{27}{1000})]\times \frac{100}{11}#
LCM of 27 and 125 is 3375, so adding first two terms in the square bracket,
= #[(\frac{-125+216}{3375})-(\frac{27}{1000})]\times \frac{100}{11}#
= #[(\frac{91}{3375})-(\frac{27}{1000})]\times \frac{100}{11}#
LCM of 3375 and 1000 is 27000,
= #(\frac{91\times8 - 27\times27}{27000})\times \frac{100}{11}#
= #(\frac{728- 729}{27000})times \frac{100}{11}#
= #(\frac{-1}{27000})times \frac{100}{11}#
= #(\frac{-1}{270})times \frac{1}{11}#
= #(\frac{-1}{2970})#