Question #0c7df

1 Answer
Sep 26, 2017

#g'(pi/3)=5/2-7/2sqrt3#
#h'(pi/3)=(7-5sqrt(3))/50#

Explanation:

#f(pi/3)=5# and #f'(pi/3)=-7#

#g(x)=f(x)sinx#
differentiate with respect to x
#g'(x)=sinxd/dx(f(x))+f(x)d/dx(sinx)#
#g'(x)=sinx.f'(x)+f(x)cosx#

then
#g'(pi/3)=sin(pi/3)f'(pi/3)+f(pi/3)cos(pi/3)#
Put all values of #f(pi/3), f'(pi/3)# and #sin(pi/3) and cos(pi/3)#
#g'(pi/3)=sqrt3/2.(-7)+(5)(1/2)=5/2-7/2sqrt3#

Now
function #h(x)=cosx/(f(x))#
differentiate with respect to x
#h'(x)=(f(x).d/dx(cosx)-cosx.d/dx(f(x)))/(f(x))^2#
#h'(x)=(f(x).(-sinx)-cosx.(f'(x)))/(f(x))^2#
#h'(x)=(-f(x).(sinx)-cosx.(f'(x)))/(f(x))^2#

#h'(pi/3)=(-f(pi/3).(sin(pi/3))-cos(pi/3).(f'(pi/3)))/(f(pi/3))^2#

#h'(pi/3)=(-(5).(sqrt3/2)-(1/2).(-7))/(5)^2#
#h'(pi/3)=(-5/2sqrt3+7/2)/25=(7-5sqrt(3))/50#