How do you solve #-3( x - 2) ^ { 2} - 33= 0#?

2 Answers
Sep 27, 2017

Solution : #x ~~ 2 + 3.32 i , x ~~ 2 - 3.32 i #

Explanation:

# -3 (x-2)^2 -33=0 or 3(x-2)^2= -33# or

# (x-2)^2= -11 or (x-2)= +-sqrt (-11) # or

#(x-2)=+-sqrt (11i^2)or x = 2 +- sqrt11 i #

#[i^2=-1] :. x = 2+sqrt 11 i , x = 2- sqrt 11 i # or

#x ~~ 2 + 3.32 i (2dp) , x ~~ 2 - 3.32 i (2dp)#

Solution : #x ~~ 2 + 3.32 i , x ~~ 2 - 3.32 i # [Ans]

Sep 27, 2017

See below.

Explanation:

#-3(x-2)^2-33=0#

Add #33# to both sides:

#-3(x-2)^2=33#

Divide both sides by #-3#:

#(x-2)^2=-11#

Take square roots of both sides:

#x-2 = sqrt(-11#

#x = 2+-sqrt(-11)#

Notice #sqrt(-11) => sqrt(11xx-1)=>sqrt(11)sqrt(-1)#

#sqrt(-1) =color(red)( i) => sqrt(11)color(red)(i)#

#color(red)(i)# is known as the imaginary unit.

This is sometimes written #isqrt(11)# to avoid any confusion.

So now we have:

#x= 2+-sqrt(11)color(red)(i)=> x= 2+-color(red)(i)sqrt(11)#

#x=2+color(red)(i)sqrt(11) , x= 2 - color(red)(i)sqrt(11)#

These are referred to as imaginary roots. These occur because the parabola neither crosses nor turns at the x axis, which indicates that no real number can satisfy the equation #-3(x-2)^2-33=0#

Graph: graph{y=-3(x-2)^2-33 [-30, 30, -400, 50]}