Question #1f1f7
1 Answer
Sep 30, 2017
Explanation:
Let's try to factor within the square roots:
#lim_(xrarroo)sqrt(x+sqrt(x+sqrtx))/sqrt(x+1)#
#=lim_(xrarroo)sqrt(x+sqrt(x(1+1/sqrtx)))/sqrt(x(1+1/x))#
Pull out what we've just factored from their respective square roots:
#=lim_(xrarroo)sqrt(x+sqrtxsqrt(1+1/sqrtx))/(sqrtxsqrt(1+1/x))#
Factor from the numerator again:
#=lim_(xrarroo)sqrt(x(1+1/sqrtxsqrt(1+1/sqrtx)))/(sqrtxsqrt(1+1/x))#
And pull this from the numerator:
#=lim_(xrarroo)(sqrtxsqrt(1+1/sqrtxsqrt(1+1/sqrtx)))/(sqrtxsqrt(1+1/x))#
Which cancels:
#=lim_(xrarroo)sqrt(1+1/sqrtxsqrt(1+1/sqrtx))/sqrt(1+1/x)#
Note that both
#=sqrt(1+0sqrt(1+0))/sqrt(1+0)#
#=sqrt1/sqrt1#
#=1#