3((n+3)!-(n+1)!)=2((n+3)!+(n+1)!) calculate n value ?

3((n+3)!-(n+1)!)=2((n+3)!+(n+1)!) calculate n value ?

3 Answers
Oct 1, 2017

#n=(-5+-sqrt(25-4))/2#

Explanation:

We have #3((n+3)!-(n+1)! =2((n+3)!+(n+1)!)#

or #3((n+3)xx(n+2)xx(n+1)!-(n+1)!) = 2((n+3)xx(n+2)xx(n+1)!+(n+1)!)#

or #3(n+1)![(n+3)(n+2)-1]=2(n+1)![(n+3)(n+2)+1]#

or #3[(n+3)(n+2)-1])=2[(n+3)(n+2)+1]#

or #3(n^2+5n+5)=2(n^2+5n+7)#

or #n^2+5n+1=0#

i.e. #n=(-5+-sqrt(25-4))/2#

Oct 1, 2017

The solution is #n in {(-5+sqrt21)/2, (-5-sqrt21)/2}#

Explanation:

The equation is

#3((n+3)!-(n+1)!)=2((n+3)!+(n+1)!)#

Factor #(n+1)!#

#3(n+1)!((n+3)(n+2)-1)=2(n+1)!((n+3)(n+2)+1)#

Simplifying by #(n+1)!#

#3((n+3)(n+2)-1)=2((n+3)(n+2)+1)#

#3(n^2+5n+6-1)=2(n^2+5n+6+1)#

#3n^2+15n+15=2n^2+10n+14#

#n^2+5n+1=0#

This is a quadratic equation in #n#

The discriminant is

#Delta=5^2-4=25-4=21#

#n=(-5+-sqrt21)/(2)#

There is a contradiction since the definition of factorials #n in NN#

And here

#n in RR#

Oct 1, 2017

#n=(-5+-sqrt(21))/(2)#

Explanation:

#3((n+3)!-(n+1)!)=2((n+3)!+(n+1)!)#
Collecting like terms
#3(n+3)!-3(n+1)! =2(n+3)!+2(n+1)!#
#3(n+3)!-2(n+3)! =2(n+1)!+3(n+1)!#
#(n+3)! =5(n+1)!#

Using Property (#(n! =n(n-1)! =n(n-1)(n-2)!)#

#(n+3)(n+2)cancel((n+1)!) =5cancel((n+1)!)#
#n^2+5n+6=5#
#n^2+5n+1=0#
Using Quadratic Solution #x=(-b+-sqrt(b^2-4ac))/(2a)#
#a=1, b=5, c=1#
#n=(-5+-sqrt(5^2-4(1)(1)))/(2(1))#
#n=(-5+-sqrt(25-4))/(2)#
#n=(-5+-sqrt(21))/(2)#