Points A and B are at #(6 ,1 )# and #(8 ,9 )#, respectively. Point A is rotated counterclockwise about the origin by #pi # and dilated about point C by a factor of #3 #. If point A is now at point B, what are the coordinates of point C?

1 Answer
Oct 4, 2017

#C=(-13,-6)#

Explanation:

#"under a counterclockwise rotation about the origin of "pi#

#• " a point "(x,y)to(-x,-y)#

#rArrA(6,1)toA'(-6,-1)" where A' is the image of A"#

#"under a dilatation about C of factor 3"#

#vec(CB)=3vec(CA')#

#rArrulb-ulc=3(ula'-ulc)#

#rArrulb-ulc=3ula'-3ulc#

#rArr2ulc=3ula'-ulb#

#color(white)(rArr2ulc)=3((-6),(-1))-((8),(9))#

#color(white)(rArrulc)=((-18),(-3))-((8),(9))=((-26),(-12))#

#rArrulc=1/2((-26),(-12))=((-13),(-6))#

#rArrC=(-13,-6)#