How do you find the quotient of #(2y^4-3y^2+1)div(y-1)# using long division?

1 Answer
Oct 4, 2017

#2y^3+2y^2-y-1#

Explanation:

#" "" "2y^3+2y^2-y-1#
#y-1|bar(cancel(2y^4)+0y^3-3y^2+0y+1)|#
#" "" " cancel(2y^4)-2y^3 #
#" "" "bar(0+cancel(2y^3)-3y^2+0y+1)#
#" "" " 0+cancel(2y^3)-2y^2#
#" "" "bar( 0+00 cancel(-1y^2)+0y+1)#
#" "" " 0+00cancel(-1y^2)+y#
#" "" "bar( 0+00+00cancel(-1y+1)#
#" "" " 0+00+00cancel(-1y+1#
#" "" "bar(................................)#

Note:
The sign is changed (+ to - or - to +) when the term is multiplied with the term in the quotient.