How do you evaluate #3\frac { 7} { 10} \times 3\frac { 1} { 2} #?

2 Answers
Oct 5, 2017

See a solution process below:

Explanation:

First, convert each mixed number into an improper fraction:

#3 7/10 xx 3 1/2 =>#

#(3 + 7/10) xx (3 + 1/2) =>#

#([10/10 xx 3] + 7/10) xx ([2/2 xx 3] + 1/2) =>#

#(30/10 + 7/10) xx (6/2 + 1/2) =>#

#(30 + 7)/10 xx (6 + 1)/2 =>#

#37/10 xx 7/2#

Next, multiply the numerators over the denominators multiplied:

#(37 xx 7)/(10 xx 2) =>#

#259/20#

We can now convert this back into a mixed number:

#259/20 => (240 + 19)/20 => 240/20 + 19/20 = 12 + 19/20 = 12 19/20##

Oct 5, 2017

#12 19/20#

Explanation:

#3 7/10=3+7/10" and "3 1/2=3+1/2#
Now #(3+7/10)*(3+1/2)#
# = 3*3 + 7/10*3 + 1/2*3 + 7/10*1/2#

#=9+21/10+3/2+7/20#

#=9+(21*2+3*10+7)/20#

#=9+(42+30+7)/20#

#=9+79/20#

#=9+(20*3+19)/20#
#=9+3+19/20#
#=12 19/20#

The process is being lengthy one can use the below method.
At first convert it to improper fraction.

That is #3 7/10=(3*10+7)/10 = 37/10" and "3 1/2=(3*2+1)/2 =7/2#
Now #37/10 * 7/2 #
#= (37*7)/(10*2)#

#=259/20#

#=(20*12+19)/20#

#=12+19/20#

#=12 19/20#